

1CAN100201

October 10, 2002

U. S. Nuclear Regulatory Commission Document Control Desk Mail Station OP1-17 Washington, DC 20555

Subject:

Arkansas Nuclear One - Unit 1

Docket No. 50-313 License No. DPR-51 ANO-1 Cycle 18 COLR

Dear Sir or Madam:

Arkansas Nuclear One – Unit 1 (ANO-1) Technical Specification 5.6.5 requires the submittal of the Core Operating Limits Report (COLR) for each reload cycle. Attached is Revision 0 of the ANO-1 Cycle 18 COLR. Please note that the approved revision number of the Babcock and Wilcox Topical Report BAW-10179P-A is identified in the COLR as August 2001. This completes the reporting requirement for the referenced specification. This submittal contains no commitments. Should you have any questions, please contact David Bice at 479-858-5338

Sincerely,

Sherrie R. Cotton

Director, Nuclear Safety Assurance

Spenie R. Cotton

SRC/dbb

Attachment: ANO-1 Cycle 18 Core Operating Limits Report (COLR)

\\ \langle_{0_{0}}

1CAN100201 Page 2 of 2

cc: Mr. Ellis W. Merschoff
Regional Administrator
U. S. Nuclear Regulatory Commission
Region IV
611 Ryan Plaza Drive, Suite 400
Arlington, TX 76011-8064

NRC Senior Resident Inspector Arkansas Nuclear One P.O. Box 310 London, AR 72847

Mr. William Reckley
NRR Project Manager Region IV/ANO-1
U. S. Nuclear Regulatory Commission
NRR Mail Stop O-7 D1
One White Flint North
11555 Rockville Pike
Rockville, MD 20852

Attachment

ANO-1 Cycle 18 Core Operating Limits Report (COLR)

ENTERGY OPERATIONS

ARKANSAS NUCLEAR ONE UNIT ONE

CYCLE 18

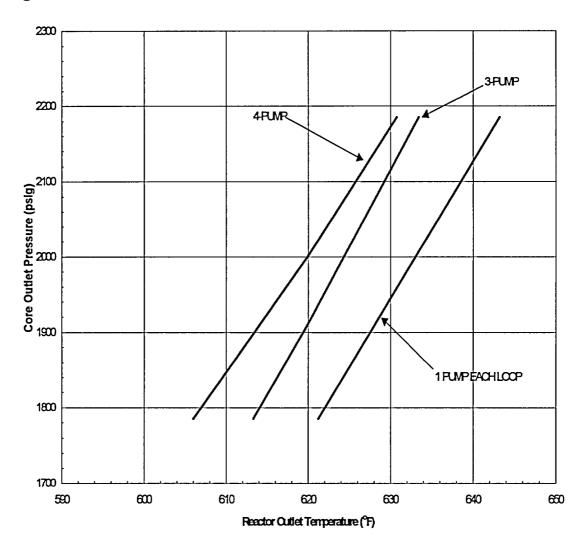
CORE OPERATING LIMITS REPORT

1.0 CORE OPERATING LIMITS

This Core Operating Limits Report for ANO-1 Cycle 18 has been prepared in accordance with the requirements of Technical Specification 5.6.5. The core operating limits have been developed using the methodology provided in the reference.

The following cycle-specific core operating limits are included in this report:

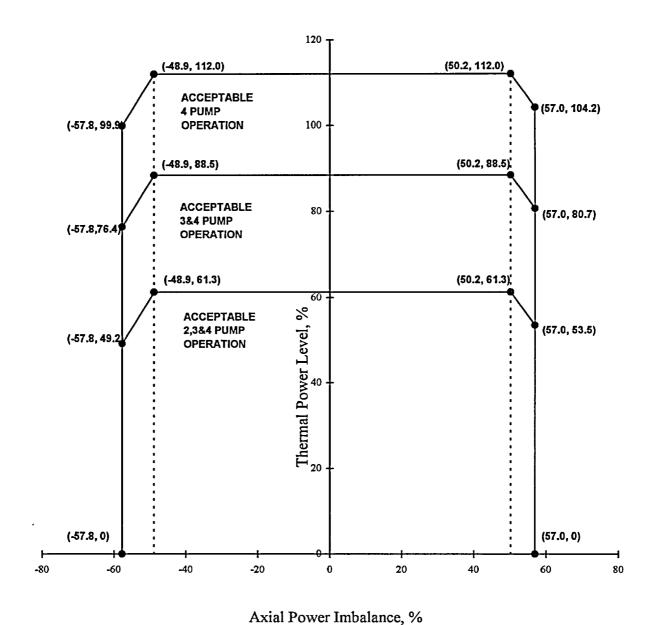
- 1) 2.1.1 Variable Low RCS Pressure Temperature Protective Limits,
- 2) 3.1.1 SHUTDOWN MARGIN (SDM),
- 3) 3.1.8 PHYSICS TESTS Exceptions MODE 1,
- 4) 3.1.9 PHYSICS TEST Exceptions MODE 2,
- 5) 3.2.1 Regulating Rod Insertion Limits,
- 6) 3.2.2 AXIAL POWER SHAPING RODS (APSR) Insertion Limits,
- 7) 3.2.3 AXIAL POWER IMBALANCE Operating Limits,
- 8) 3.2.4 QUADRANT POWER TILT (QPT),
- 9) 3.2.5 Power Peaking,
- 10) 3.3.1 Reactor Protection System (RPS) Instrumentation,
- 11) 3.4.1 RCS Pressure, Temperature, and Flow DNB limits,
- 12) 3.4.4 RCS Loops MODES 1 and 2, and
- 13) 3.9.1 Boron Concentration.


2.0 REFERENCES

- 1. "Safety Criteria and Methodology for Acceptable Cycle Reload Analysis," BAW-10179P-A, Rev. 4, Framatome ANP, Lynchburg, Virginia, August 2001.
- Letter dated 4/9/02 from L W. Barnett USNRC to J.M. Mallay FRA-ANP, "Safety Evaluation of Framatome Technologies Topical Report BAW-10164P Revision 4, 'RELAP5/MOD2- B&W, An Advanced Computer Program for Light Water Reactor LOCA and Non-LOCA Transient Analysis' (TAC Nos MA8465 and MA8468)," USNRC ADAMS Accession Number ML013390204.
- 3. RELAP5/MOD2-B&W An Advanced Computer Program for Light Water Reactor LOCA Transient Analysis, BAW-10164P, Rev. 4, Framatome Technologies, Inc., Lynchburg, Virginia, September 1999.
- 4. "Qualification of Reactor Physics Methods for the Pressurized Water Reactors of the Entergy System," ENEAD-01-P, Rev. 0, Entergy Operations, Inc., Jackson, Mississippi, December 1993.

Table Of Contents

				Page Page
REAC'	TOR (RE SAFETY LIMITS	
	Fig 1		Variable Low RCS Pressure-Temperature Protective Limits	
	Fig 2		AXIAL POWER IMBALANCE protective Limits	
SHUTI	DOWN	M	ARGIN (SDM)	6
REGU			ROD INSERTION LIMITS	
	Fig 3	3-A	Regulating Rod Insertion Limits for Four-Pump Operation	
			From 0 to 200 ± 10 EFPD	7
	Fig 3	3-B	Regulating Rod Insertion Limits for Four-Pump Operation	
			From 200 ± 10 EFPD to EOC	8
	Fig 4	4-A	Regulating Rod Insertion Limits for Three-Pump Operation	
			From 0 to 200 ± 10 EFPD	9
	Fig 4	4-B	Regulating Rod Insertion Limits for Three-Pump Operation	
			From 200 ± 10 EFPD to EOC	10
	Fig 5	5-A	Regulating Rod Insertion Limits for Two-Pump Operation	
			From 0 to 200 ± 10 EFPD	11
	Fig. 5	5-B	Regulating Rod Insertion Limits for Two-Pump Operation	
	_		From 200 ± 10 EFPD to EOC	12
AXIAI	POW	ÆR	SHAPING RODS (APSR) INSERTION LIMITS	13
AXIAI	POW	ÆR	IMBALANCE OPERATING LIMITS	
	Fig 6	6 - A	AXIAL POWER IMBALANCE Setpoints for Full In-Core Conditions for Four-Pump	
	_		Operation	14
	Fig 6	6-B	AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions for	
			Four-Pump Operation	15
	Fig. 6	6 -C	AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Four-Pump	
			Operation	16
	Fig. 7	7-A		
			Operation	17
	Fig 7	7-B	AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions for .	
			Three-Pump Operation	18
	Fig 7	7-C	AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Three-Pump	
			Operation	19
	Fig 8	8-A		
	 ,	~ ~	Operation	20
	Fig 8	8-B	AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions for	0.1
	T:- (Two-Pump Operation	21
	Fig 8	8-C	AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Two-Pump	22
OTIAN	D A NIT	י שר	Operation OWER TILT LIMITS AND SETPOINTS	22
			NG FACTORS	23
FUWE			LOCA Linear Heat Rate Limits	24
	_		wer Peaking Factors	
DEAC'			OTECTION SYSTEM (RPS) INSTRUMENTATION	23
MEMU.			RPS Maximum Allowable Setpoints for Axial Power Imbalance	26
			RPS Variable Low Pressure Temperature Envelope Setpoints	
RCS P			E, TEMPERATURE, AND FLOW DNB SURVEILLANCE LIMITS	
			ODE 1 AND 2	
REFIII	ELING	; B(ORON CONCENTRATION	30

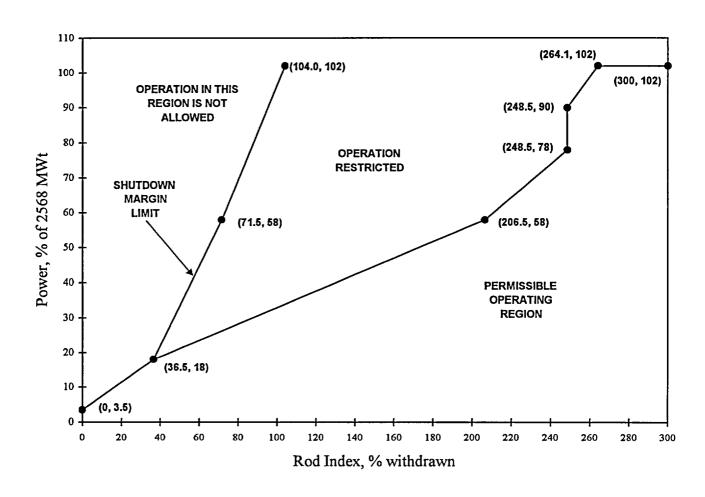

Figure 1. Variable Low RCS Pressure--Temperature Protective Limits

PUMPS OPERATING (TYPE OF LIMIT)	<u>GPM*</u>	POWER**
Four Pumps (DNBR Limit)	369,600 (100%)	110%
Three Pumps (DNBR Limit)	276,091 (74.7%)	89%
One Pump in Each Loop (DNBR Limit)	181,104 (49%)	62.2%
* 105% of Design Flow (2.5% UNCERTAINTY INCLUD	DED IN STATISTICAL DESIG	NIMIT

^{**}AN ADDITIONAL 2% POWER UNCERTAINTY IS INCLUDED IN STATISTICAL DESIGN LIMIT

Figure 2. AXIAL POWER IMBALANCE Protective Limits (measurement system independent)

LIMITS ARE REFERRED TO BY TECHNICAL SPECIFICATIONS 3.1.1, 3.1.4, 3.1.5, 3.1.8, 3.1.9, AND 3.3.9


SHUTDOWN MARGIN (SDM)

Verify SHUTDOWN MARGIN per the table below.

APPLICABILITY	REQUIRED SHUTDOWN MARGIN	TECHNICAL SPECIFICATION REFERENCE
MODE 1	≥ 1 %∆k/k	3.1.4, 3.1.5
MODE 2	≥ 1 %∆k/k	3.1.4, 3.1.5, 3.3.9
MODE 3*	≥ 1 %∆k/k	3.1.1, 3.3.9
MODE 4*	≥ 1 %∆k/k	3.1.1, 3.3.9
MODE 5*	≥ 1 %∆k/k	3.1.1, 3.3.9
MODE 1 PHYSICS TESTS Exceptions*	≥ 1 %∆k/k	3.1.8
MODE 2 PHYSICS TESTS Exceptions	≥ 1 %∆k/k	3.1.9

^{*}Requires <u>actual</u> shutdown margin to be $\geq 1 \%\Delta k/k$.

Figure 3-A. Regulating Rod Insertion Limits for Four-Pump Operation From 0 to 200 ± 10 EFPD

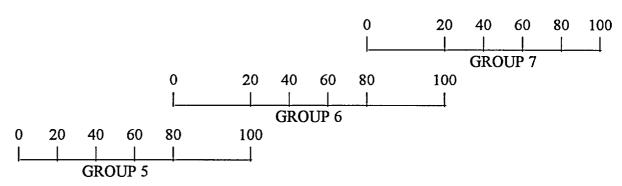


Figure 3-B. Regulating Rod Insertion Limits for Four-Pump Operation From 200 ± 10 EFPD to EOC

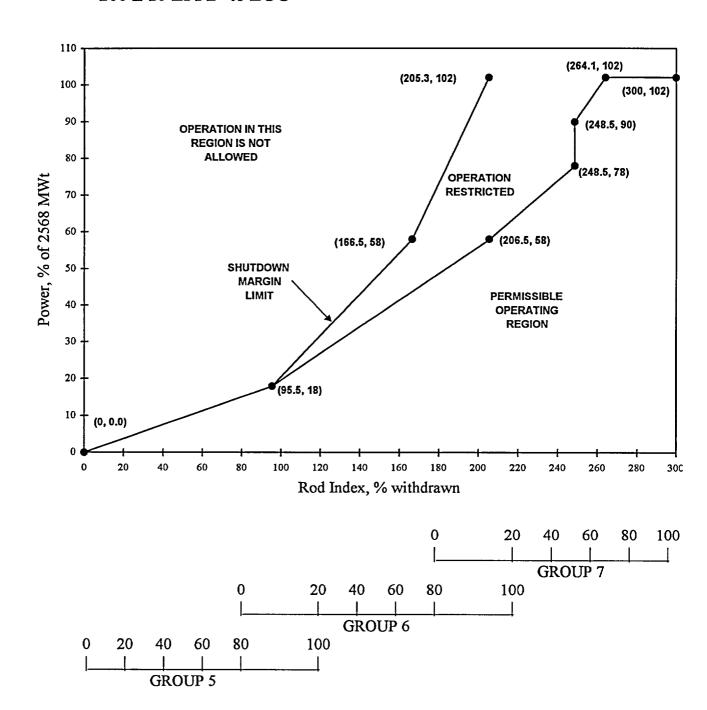
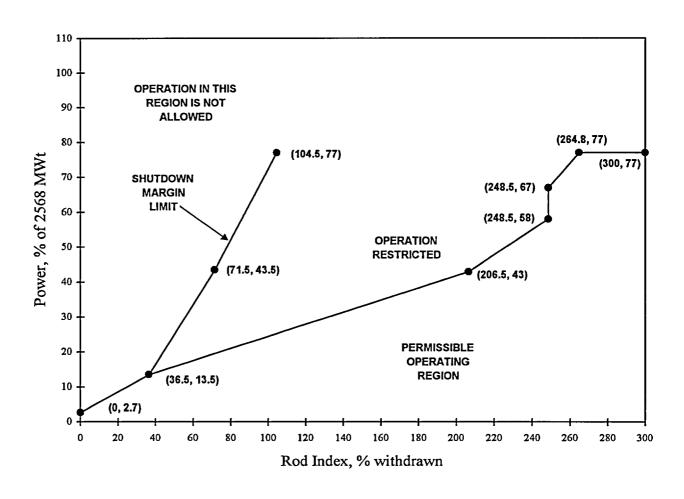



Figure 4-A. Regulating Rod Insertion Limits for Three-Pump Operation From 0 to 200 ± 10 EFPD

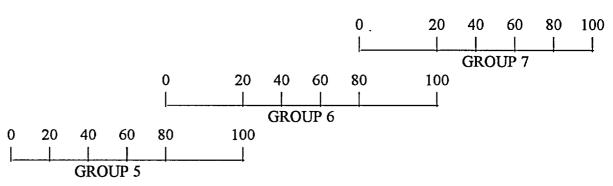
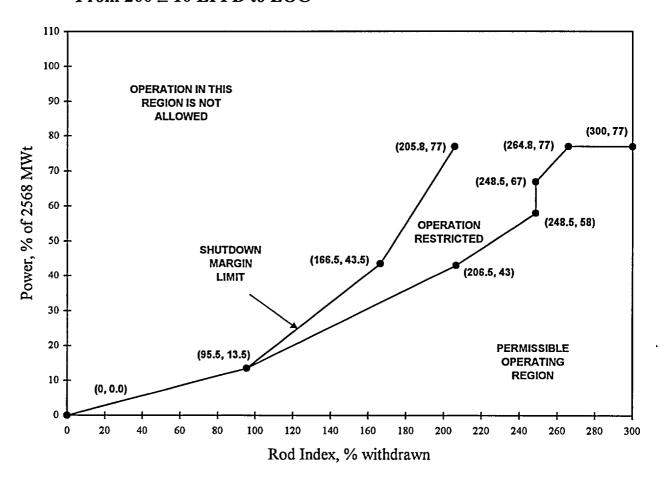



Figure 4-B. Regulating Rod Insertion Limits for Three-Pump Operation From 200 ± 10 EFPD to EOC

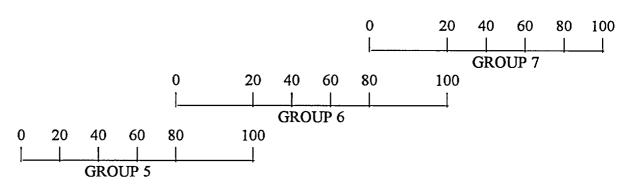
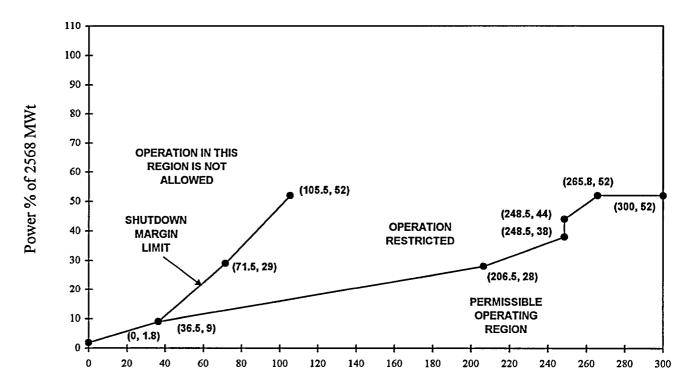



Figure 5-A. Regulating Rod Insertion Limits for Two-Pump Operation From 0 to 200 ± 10 EFPD

Rod Index, % withdrawn

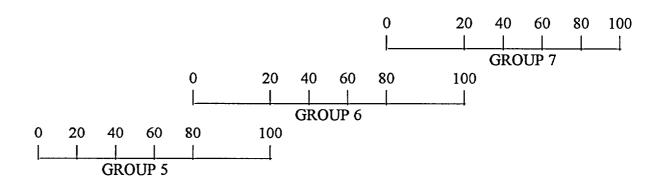
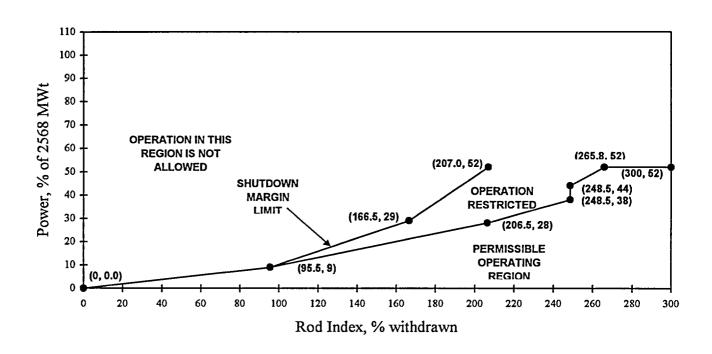
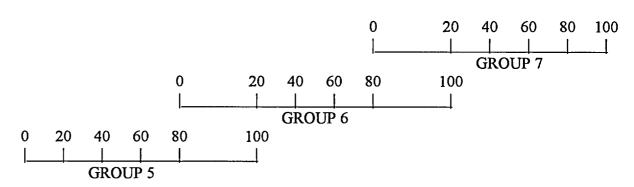




Figure 5-B. Regulating Rod Insertion Limits for Two-Pump Operation From 200 ± 10 EFPD to EOC

LIMITS ARE REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2

AXIAL POWER SHAPING RODS (APSR) Insertion Limits

Up to 470 \pm 10 EFPD, the APSRs may be positioned as necessary for transient imbalance control, however, the APSRs shall be fully withdrawn by 480 EFPD. After the APSR withdrawal at 470 \pm 10 EFPD, the APSRs shall not be reinserted.

Figure 6-A. AXIAL POWER IMBALANCE Setpoints for Full In-Core Conditions for Four-Pump Operation

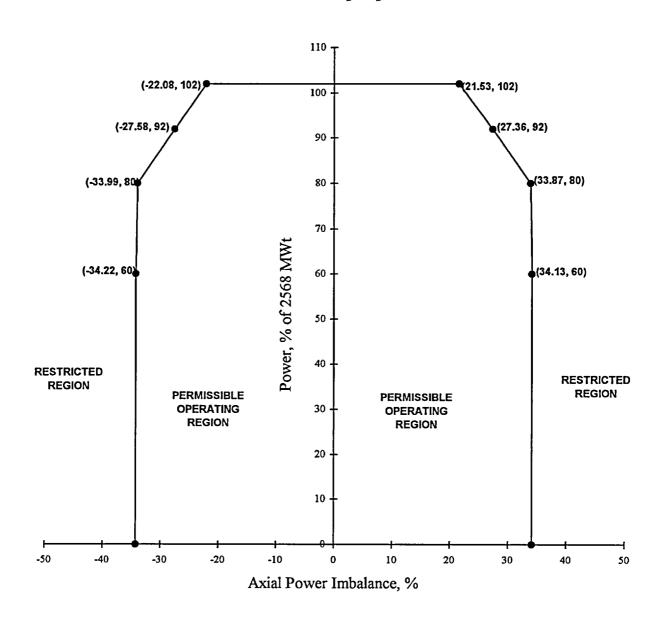
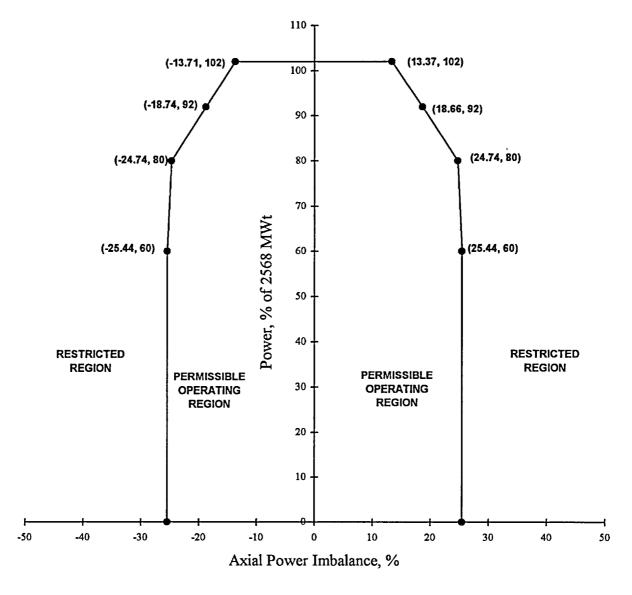



Figure 6-B. AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions* for Four-Pump Operation

* Assumes that no individual short emitter detector affecting the minimum in-core imbalance calculation exceeds 60% sensitivity depletion, and that no individual long emitter detector exceeds 73% sensitivity depletion, or both. The imbalance setpoints for the minimum in-core system must be reduced by 2.80 %FP at the earliest time-in-life that this assumption is no longer valid.

Figure 6-C. AXIAL POWER IMBALANCE Setpoints for Excore Conditions for Four-Pump Operation

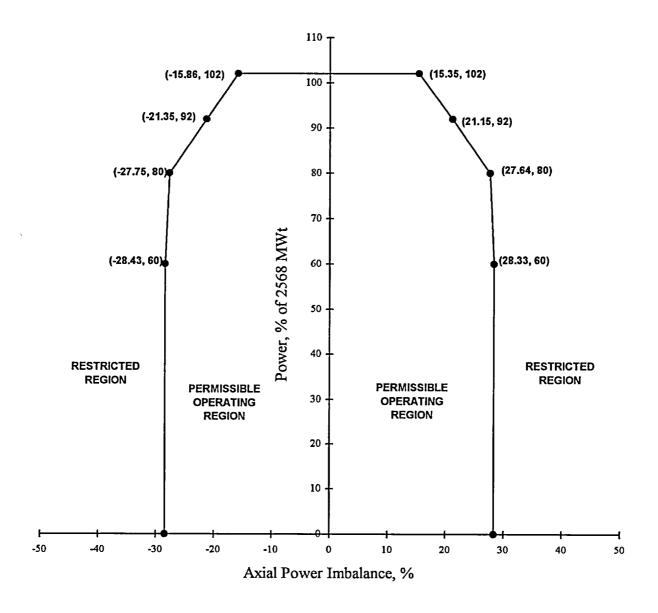


Figure 7-A. AXIAL POWER IMBALANCE Setpoints for Full In-Core Conditions for Three-Pump Operation

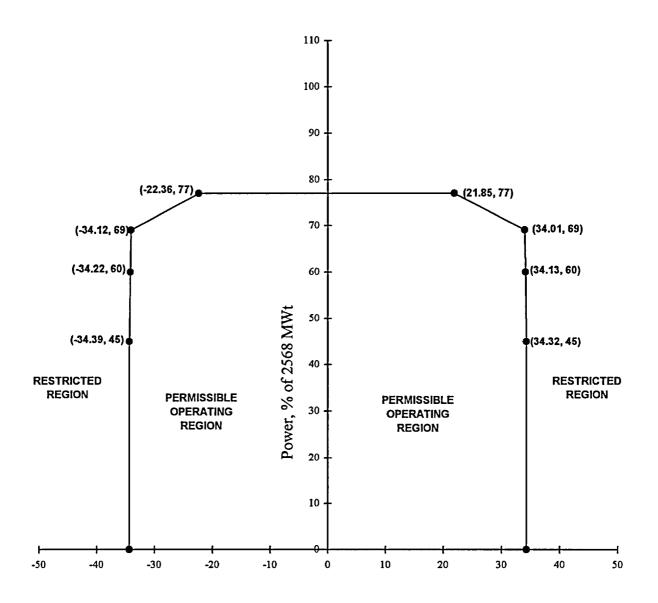
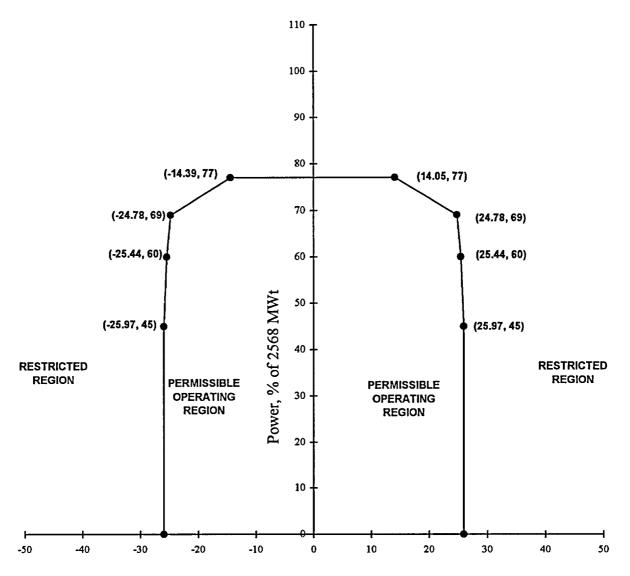



Figure 7-B. AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions* for Three-Pump Operation

* Assumes that no individual short emitter detector affecting the minimum in-core imbalance calculation exceeds 60% sensitivity depletion, and that no individual long emitter detector exceeds 73% sensitivity depletion, or both. The imbalance setpoints for the minimum in-core system must be reduced by 2.80 %FP at the earliest time-in-life that this assumption is no longer valid

Figure 7-C. AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Three-Pump Operation

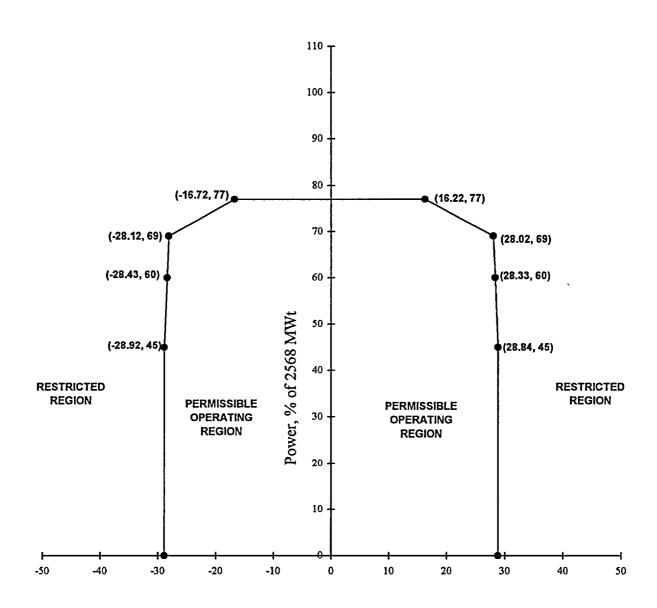


Figure 8-A. AXIAL POWER IMBALANCE Setpoints for Full In-Core Conditions for Two-Pump Operation

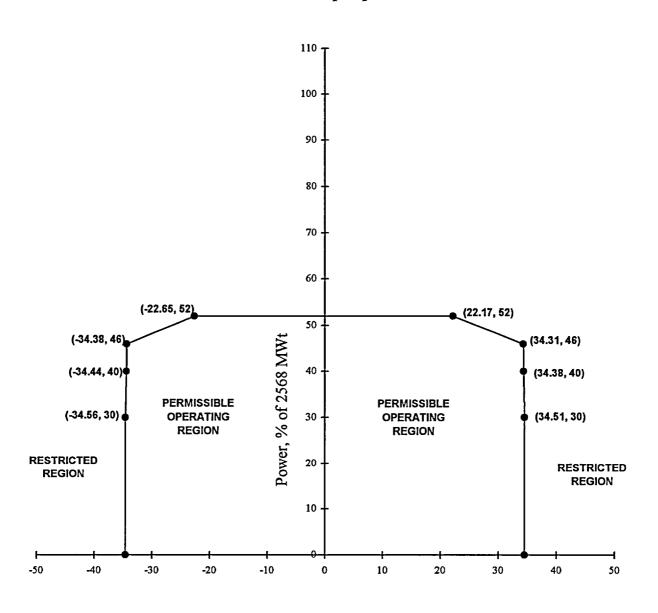
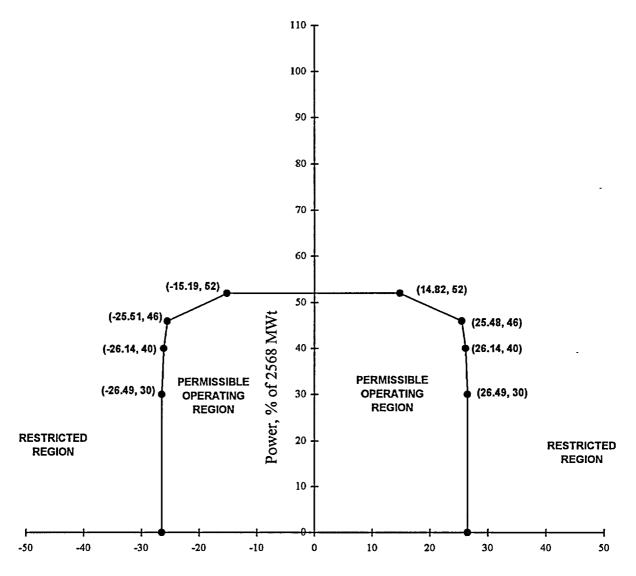
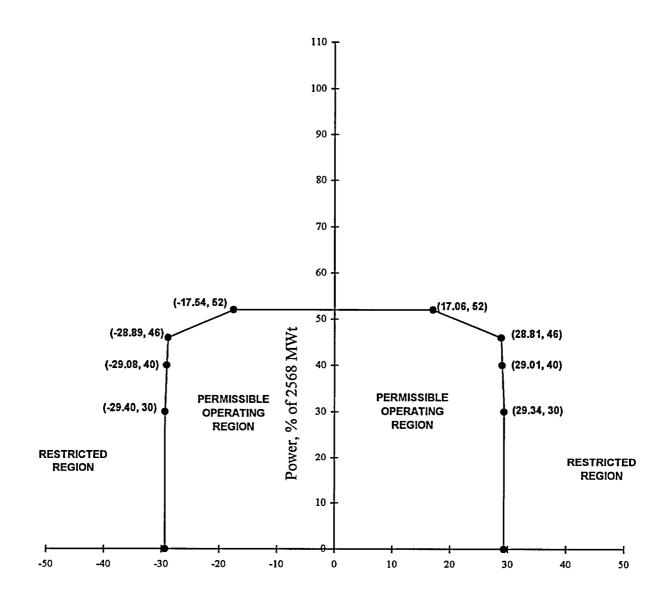
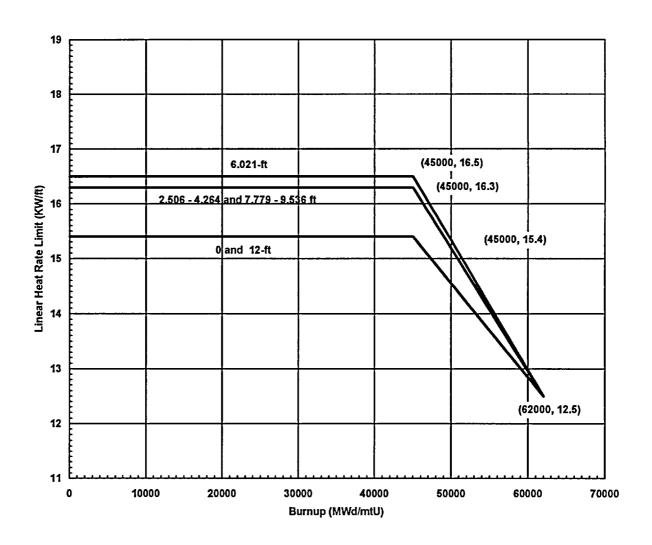




Figure 8-B. AXIAL POWER IMBALANCE Setpoints for Minimum In-Core Conditions* for Two-Pump Operation

* Assumes that no individual short emitter detector affecting the minimum in-core imbalance calculation exceeds 60% sensitivity depletion, and that no individual long emitter detector exceeds 73% sensitivity depletion, or both The imbalance setpoints for the minimum in-core system must be reduced by 2.80 %FP at the earliest time-in-life that this assumption is no longer valid.

Figure 8-C. AXIAL POWER IMBALANCE Setpoints for Ex-Core Conditions for Two-Pump Operation


LIMITS ARE REFERRED TO BY TECHNICAL SPECIFICATION 3.2.4

Quadrant Power Tilt Limits And Setpoints

From 0 EFPD to EOC				
Measurement System	Steady State Value (%)		Maximum Value (%)	
	<u>≤60 % RTP</u>	<u>>60 % RTP</u>		
Full In-core Detector System Setpoint	6.83	4.44	25.0	
Minimum In-core Detector System Setpoint	2.78*	1.90*	25.0	
Ex-core Power Range NI Channel Setpoint	4.05	1.96	25.0	
Measurement System Independent Limit	7.50	4.92	25.0	

^{*} Assumes that no individual long emitter detector affecting the minimum in-core tilt calculation exceeds 73% sensitivity depletion. The setpoint must be reduced to 1.50% (power levels >60% FP) and to 2.19% (power levels ≤60% FP) at the earliest time-in-life that this assumption is no longer valid.

Figure 9. LOCA Linear Heat Rate Limits

LIMIT IS REFERRED TO BY TECHNICAL SPECIFICATION 3.1.8 and 3.2.5

DNB Power Peaking Factors

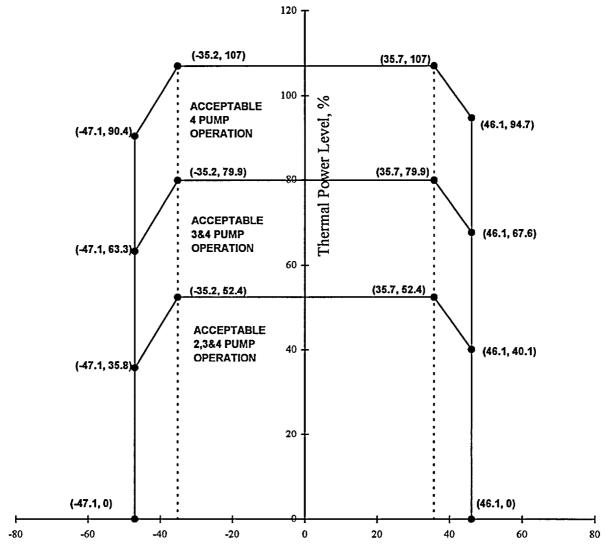
The following total power peaking factors define the Maximum Allowable Peaking (MAP) limits to protect the initial conditions assumed in the DNB Loss of Flow transient analysis

		Total	Peak
Axial	Axial Peak	4 - Pump	3 - Pump
Peak	Location	Operation	Operation
	X/L		
1.1	0.2	2.028	2.028
1.1	0.4	2.021	2.021
1.1	0.6	2.008	2.008
1.1	0.8	1.985	1.985
1.3	0.2	2.515	2.515
1.3	0.4	2.486	2.486
1.3	0.6	2.411	2.411
1.3	0.8	2.252	2.252
1.5	0.2	2.973	2.973
1.5	0.4	2.786	2.786
1.5	0.6	2.596	2.596
1.5	0.8	2.422	2.422
1.7	0.2	3.117	3.117
1.7	0.4	2.921	2.921
1.7	0.6	2.727	2.727
1.7	0.8	2.560	2.560
1.9	0.2	3.237	3.237
1.9	0.4	3.024	3.024
1.9	0.6	2.841	2.841
1.9	0.8	2.675	2.675

Note - the values above have not been error corrected

The present T-H methodology allows for an increase in the design radial-local peak for power levels under 100% full power. The equations defining the multipliers are as follows:

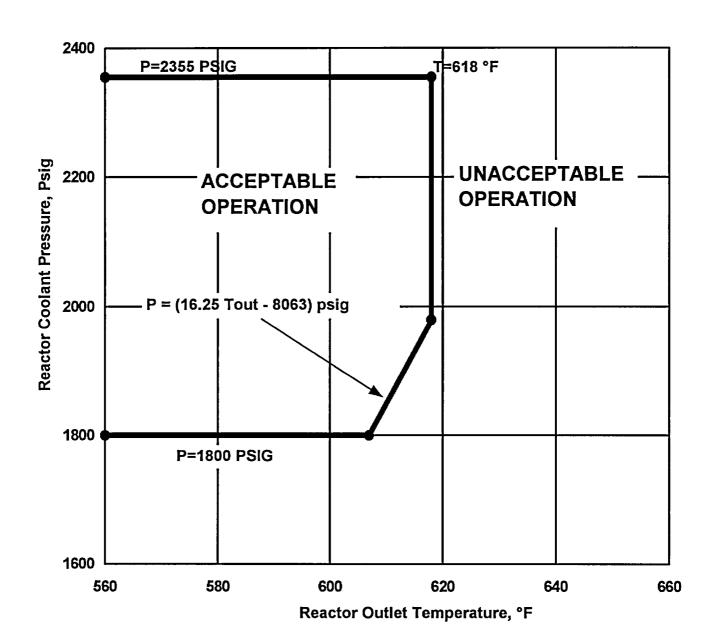
	$P/P_{\rm m} = 1.00$	$P/P_{\rm m} < 1.00$
MAP Multiplier	1.0	$1 + 0.3(1 - P/P_m)$


Where P = core power fraction, and

 $P_m = 1.00$ for 4 pump operation, or

= 0.75 for 3-pump operation.

Figure is referred to by Technical Specification 2.1.1.1, 2.1.1.2, and 3.3.1


Figure 10. Reactor Protection System Maximum Allowable Setpoints for Axial Power Imbalance

Axial Power Imbalance, %

	Flux / Flow Setpoint (% Power / % Flow)
Four Pump Operation	1.07
Three Pump Operation	1.07
Two Pump Operation	1.07

Figure 11. Reactor Protection System Variable Low Pressure Temperature Envelope Setpoints

LIMIT IS REFERRED TO BY TECHNICAL SPECIFICATION 3.4.1

RCS Pressure, Temperature, and Flow DNB Surveillance Limits

	Four-Pump Operation	Three-Pump Operation	Two-Pump Operation
Minimum RCS Hot Leg Pressure (psig) ^{Note 1}	2065.7	2063.9 Note 4 2100.9 Note 5	2099.1
Maximum RCS Hot Leg Temperature (°F) Note 2	603.45	603,55	604.00
Minimum RCS Total Flow (Mlb _m /hr) Note 3	138.10 ^{Note 6} 132.96 ^{Note 9}	103.36 Note 7 99.50 Note 9	68.06 Note 8 65.48 Note 9

- Note 1 Using individual indications P1021, P1023, P1038 and P1039 (or equivalent) from the plant computer
- Note 2 -- Using individual indications T1011NR, T1014NR, T1039NR, T1042NR, T1012, T1013, T1040 and T1041 or averages TOUTA, XTOUTA, TOUTB, XTOUTB, TOUT, XTOUT from the plant computer
- Note 3 -- Using indication WRCFT (or equivalent) from the plant computer, and can be linearly interpolated between these values provided the T_{ave} versus Power level curve is followed.
- Note 4 -- Applies to the RCS loop with two RCPs operating
- Note 5 -- Applies to the RCS loop with one RCP operating.

Note 6 - For Toold = 555.79°F.

Note 7 -- For Toold = 55569°F.

Note 8 -- For Toold = 555.31°F.

Note 9 -- For Toold = 580°F.

LIMIT IS REFERRED TO BY TECHNICAL SPECIFICATION 3.4.4

RCS Loops - Mode 1 and Mode 2

	Nominal Operating Power Level (% Power)
Four Pump Operation	100
Three Pump Operation	75
Two Pump Operation*	49

^{*}Technical Specification 3.4.4 does not allow indefinite operation in Modes 1 and 2 with only two pumps operating.

LIMIT IS REFERRED TO BY TECHNICAL SPECIFICATION 3.9.1

Refueling Boron Concentration

The minimum required boron concentration (which includes uncertainties) for use during refueling as a function of EFPD is:

EOC 17 EFPD	ppm
520	2433
522	2430
524	2427
526	2424
528	2421
530	2418
532	2415
534	2412
536	2409